

Features

- Compliant to SFP+ MSA
- Fully RoHS Compliant
- All metal housing for superior EMI performance
- IPF compliant mechanics (SFF-8432 Rev 5.0)
- CDR with 9.95 to 11.3Gbps
- Uncooled DML DFB Laser
- High sensitivity PIN photodiode and TIA
- LC duplex connector
- Hot pluggable 20pin connector
- Low power consumption <1.5W
- -5℃ to 70℃ operating wide temperature range
- Single +3.3V±5% power supply
- Digital Monitoring SFF-8472 Rev 10.4 compliant
- Real time monitoring of: Transmitted optical power Received optical power Laser bias current Temperature Supply voltage

Applications

- SONET OC-192 SR-1&SDH STM I-64.1
- 10GBASE-LR/LW
- 10G Fiber Channel

The uncooled 1310nm DML laser based 10Gigabit SFP+ Transceiver is designed to transmit and receive serial optical data over single mode optical fiber with 10Km.

They are compliant with SFF-8431,SFF-8432, 10GFC Rev 4.0, IEEE 802.3ae 10GBASE-LR/LW, Telcordia GR-253-CORE OC-192 SR-1 and ITU-T G.691 STM-64 I-64.1. The transmitter converts serial CML electrical data into serial optical data compliant with the IEEE 802.3ae standard. The receiver converts serial optical data into serial CML electrical data into serial CML electrical data into serial CML electrical data into serial optical data.Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.

Specifications

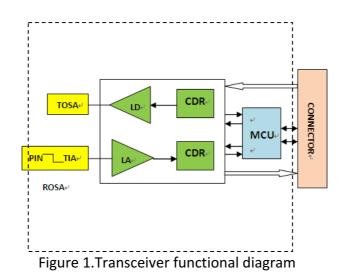
(Tc=-5 oC to 70 oC and Vcc= 3.14 to 3.46V)

Parameter	Symbol	Unit	Min	Тур	Max	Note	
Transmitter							
Nominal Wavelength	λ	nm	1290		1330		
Side Mode Suppression Ratio	SMSR	dB	30				
Spectral Width(-20dB)	Δλ	nm			1		
Optical Output Power	Pav	dBm	-6		-1		
Extinction Ratio	ER	dB	6				
Transmitter and Dispersion Penalty	TDP	dB			1	1	
Average Launch Power of OFF Transmitter	POFF	dBm			-30		
Eye diagram Compliant with ITU-T G.691 eye mask					<		
	Re	eceiver					
Center Wavelength	λC	nm	1260		1610		
Receiver Sensitivity1	Sen1	dBm			-11	2,3	
Receiver Sensitivity2	Sen2	dBm			-14.4	2,4	
Overload		dBm	0.5			2	
Receiver Reflectance	RL	dB			-14		
LOS Assert	LOSA	dBm	-30			2	
LOS De-Assert	LOSD	dBm			-17	2	
LOS Hysteresis		dB	0.5		6	2	

Note1: With 10km G.652 SMF

Note2: Ber<10⁻¹², 2³¹-1PRBS NRZ, 1310nm, ER=6dB

Note3: For SONET/SDH/OTN application


Note4: For Ethernet/Fiber Channel application

Ordering Information

Specifications										
Part No.	Package	Data rate	Laser	Optical Power	Detector	Sensitivity	Temp	Reach	Other	Application
RTXM228-408	SFP+	Up to 11.3G	1310nm DML	-6 ~-1dBm	PIN	< -11dBm	-5~70oC	10km	CDR	SDH I-64.1 10GBASE-LR/LW 10G Fiber Channel

Block diagram

Absolute Maximum Ratings

Parameter	Symbol	Unit	Min	Мах
Storage Temperature Range	Ts	°C	-40	85
Relative Humidity	RH	%	0	95

Recommended Operating Conditions

Parameter	Symbol	Unit	Min	Тур	Max
Operating Case Temperature Range	Tc	°C	-5		70
Power Supply Voltage	Vcc	V	3.14	3.3	3.46
Bit Rate	BR	Gb/s	9.95		11.32
Bit Error Ratio	BER				10 ⁻¹²
Max Supported Link Length	L	Km			10

Electric Ports Definition

Parameter	Symbol	Unit	Min	Тур	Max	Note
Supply Voltage	V _{cc}	V	3.14	3.3	3.46	
Supply Current	lcc	mA			450	
	Transmitter					
Input Differential Impedance	R _{IN}	Ω	80	100	120	
Differential Data Input	V _{IN}	mVp-p	120		850	
Transmit Disable Voltage	V _{DIS}	V	2		V _{CCHOST}	
Transmit Enable Voltage	V _{EN}	V	V_{EE}		V _{EE} +0.8	
Transmit Fault Assert Voltage	V _{FA}	V	2		V _{CCHOST}	
Transmit Fault De-Assert Voltage	V_{FDA}	V	V_{EE}		V_{EE} +0.4	
	Receiver					
Differential Data Output	V _{OD}	mVp-p	400		800	
Output Rise Time	t _{RISE}	pS	24			
Output Fall Time	t _{FALL}	pS	24			
LOS Fault	VLOSFT	V	2		V _{CCHOST}	
LOS Normal	V _{LOSNR}	V	V_{EE}		V _{EE} +0.4	

Pin function definitions

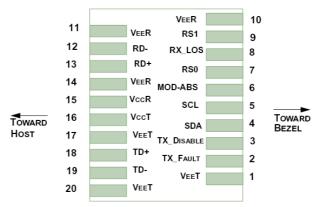
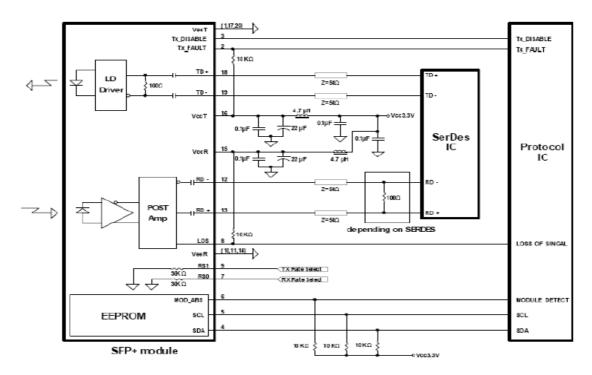
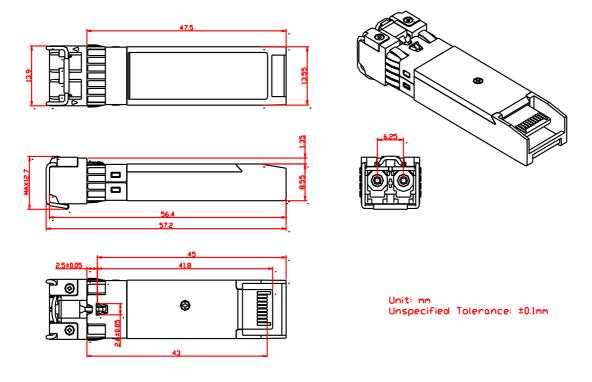


Figure 2.Pin function definitions

Pin Number	Symbol	Name	Description
1,17,20	VeeT	Transmitter Signal Ground	These pins should be connected to signal ground on the host board.
2	TX Fault	Transmitter Fault Out (OC)	Logic "1" Output = Laser Fault (Laser off before t_fault) Logic "0" Output = Normal Operation


Table 1: Transceiver pin descriptions


			This pin is open collector compatible, and should be pulled up to Host Vcc with a $10k\Omega$ resistor.
			Logic "1" Input (or no connection) = Laser off
3	ΤХ	Transmitter Disable In	Logic "0" Input = Laser on
5	Disable	(LVTTL)	This pin is internally pulled up to VccT with a 10 $k\Omega$
			resistor.
4	SDA		Serial ID with SFF 8472 Diagnostics
5	SCL	Module Definition Identifiers	Module Definition pins should be pulled up to Host Vcc
6	MOD-ABS		with 10 k Ω resistors.
7	RS0	Receiver Rate Select (LVTTL)	These pins have an internal $30 k \Omega$ pull-down to ground. A
9	RS1	Transmitter Rate Select (LVTTL)	signal on either of these pins will not affect module performance.
			Sufficient optical signal for potential
			$BER < 1x10^{-12} = Logic "0"$
8	LOS	Loss of Signal Out (OC)	Insufficient optical signal for potential
-			$BER < 1x10^{-12} = Logic "1"$
			This pin is open collector compatible, and should be pulled
			up to Host Vcc with a $10k\Omega$ resistor.
10,11,14	VeeR	Receiver Signal Ground	These pins should be connected to signal ground on the host board.
		Receiver Negative DATA Out	Light on = Logic "0" Output Receiver DATA output is
12	RD-		internally AC coupled and series terminated with a 50Ω
		(0.012)	resistor.
13	RD+	Receiver Positive DATA Out (CML)	Light on = Logic "1" Output Receiver DATA output is internally AC coupled and series terminated with a 50Ω resistor.
15	VccR	Receiver Power Supply	This pin should be connected to a filtered +3.3V power supply on the host board. See Figure 3.Recommended
15	veen	receiver i ower ouppry	power supply filter
17	VerT	Transmitter Dever Surgel-	This pin should be connected to a filtered +3.3V power supply on the heat heard. See Figure 2 Recommended
16	VccT	Transmitter Power Supply	supply on the host board. See Figure 3.Recommended
			power supply filter
10		Transmitter Positive DATA In	Logic "1" Input = Light on Transmitter DATA inputs are
18	TD+	(CML)	internally AC coupled and terminated with a differential 100Ω resistor.
			Logic "0" Input = Light on Transmitter DATA inputs are
19	TD-	Transmitter Negative DATA In	internally AC coupled and terminated with a differential
17	10-	(CML)	100Ω resistor.

Typical Application Circuit

Package Outline

ACCEIINK | LIGHTING YOUR DREAMS 让光引领梦想

Regulatory Compliance

Feature	Test Method	Performance		
Electrostatic Discharge (ESD)	MIL-STD-883C Method	C_{1} (> 1500 Valta)		
to the Electrical Pins	3015.7	Class 1 (> 1500 Volts)		
Electrostatic Discharge (ESD)		Typically, no damage occurs with 15 kV when the		
Electrostatic Discharge (ESD)	Variation of IEC 61000-4-2	duplex LC connector receptacle is contacted by a		
to the Duplex LC Receptacle		Human Body Model probe.		
	CISPR22 ITE Class B			
Electrostatic Interference (EMI)	EN55022 Class B	Compliant with standards		
	FCC Class B			
	IEC61000-4-3 Class 2	Typically show no measurable effect from a 3V/m		
Immunity	EN55024	field swept from 80 to 1000MHz applied to the		
	EN33024	transceiver without a chassis enclosure.		
		Less than 1000 ppm of cadmium, lead, mercury,		
RoHS Compliance		hexavalent chromium, polybrominated biphenyls,		
		and polybrominated biphenyl ethers.		

www.sfp.by

ACCEIINK | LIGHTING YOUR DREAMS 让光引领梦想