

Regulatory Compliance

Table 1 - Regulatory Compliance

Features

- 1.25Gbps bi-directional data links
- 40km transmission distance with 9/125 μm SMF
- 1310nm un-cooled DFB laser
- PIN photodiode receiver
- Class I laser product
- Digital diagnostic monitor interface Compatible with SFF-8472
- SFP MSA package with duplex LC receptacle
- With Spring latch for high density application
- Very low EMI and excellent ESD protection
- Single 3.3V power supply
- Operating case temperature:

Standard: -5 to +70°C Extended: -20 to +85°C Industrial: -40 to +85°C

RoHS compliant

Electrostatic Discharge	MIL-STD-883E	Class 1	
(ESD) to the Electrical Pins	Method 3015.7	Class	
Electrostatic Discharge (ESD) to the	IEC 61000-4-2	Compliant with standards	
Duplex LC Receptacle	IEC 61000-4-2	Compliant with standards	
Electromagnetic	FCC Part 15 Class B	Compliant with standards	
Interference (EMI)	FOC FAIL 15 Class B	Compliant with standards	
Lagor Evo Safaty	FDA 21CFR 1040.10 and 1040.11	Compliant with Class I laser	
Laser Eye Safety	EN (IEC) 60825-1,2	product.	
RoHS	2002/95/EC 4.1&4.2	Compliant with DoUS	
	2005/747/EC	Compliant with RoHS	

Absolute Maximum Ratings

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Storage Temperature	Ts	-40	-	+85	°C	
Supply Voltage	V _{CC}	-0.5	-	+3.6	V	
Operating Relative Humidity	RH	+5	-	+95	%	

Recommended Operating Conditions

Table 3 - Recommended Operating Conditions

Parameter		Symbol	Min.	Typical	Max.	Unit	Notes
On a setting of the set	SP-GB-EX-CDFB	T	-5		+70	°C	
Operating Case Temperature	SP-GB-EX-RDFB	T _c	-20		+85	°C	
remperature	SP-GB-EX-IDFB		-40		+85		
Power Supply Volt	Power Supply Voltage		3.13	3.3	3.47	V	
Power Supply Current		I _{CC}	-		300	mA	
Power Dissipation		P_{D}	-	-	1	W	
Data Rate				1.25		Gbps	

Optical Characteristics

Table 4 - Optical Characteristics

Transmitter							
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes	
Centre Wavelength	λ _C	1270	1310	1355	nm		
Average Output Power	P _{0ut}	-5		0	dBm	1	
P _{0ut} @TX Disable Asserted	P _{0ut}			-45	dBm	1	
Spectral Width (RMS)	σ			1	nm		
Extinction Ratio	EX	9			dB		
Rise/Fall Time (20%~80%)	t _r /t _f			0.26	ns	2	
Total Jitter	TJ			0.481	UI	3	
Deterministic Jitter	DJ			0.25	UI	3	
Output Optical Eye	IEEE 80	02.3z and AN	SI Fibre Cha	annel Compa	atible	4	
	F	Receiver					
Centre Wavelength	λ _C	1260		1580	nm		
Receiver Sensitivity				-23	dBm	5	
Receiver Overload		-3			dBm		
Return Loss		12			dB		
LOS De-Assert	LOS _D			-23	dBm		
LOS Assert	LOS _A	-35			dBm		
LOS Hysteresis		1		4	dB		
Total Jitter (pk-pk)	TJ			0.749	UI	3	
Deterministic Jitter (pk-pk)	DJ			0.462	UI	3	

Notes:

- 1. The optical power is launched into SMF.
- 2. Unfiltered, measured with a PRBS 2⁷-1 test pattern @1.25Gbps
- 3. Measured with a PRBS 2^7 -1 test pattern@1.25Gbps, meet the specified maximum output jitter requirements if the specified maximum input jitter is present.
- 4. Measured with a PRBS 2⁷-1 test pattern @1.25Gbps.

5. Measured with a PRBS 2^7 -1 test pattern @1.25Gbps, extinction ratio ER=9dB, BER $\leq 1 \times 10^{-12}$

Electrical Characteristics

Table 5 - Electrical Characteristics

Transmitter Transmitter						
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Data Input Swing Differential	V _{IN}	500		2400	mV	1
Input Differential Impedance	Z _{IN}	90	100	110	Ω	
Tx_DIS Disable	V _D	2.0		V _{CC}	V	
Tx_DIS Enable	V _{EN}	GND		GND+0.8	V	
TX_ Fault (Fault)		2.0		Vcc+0.3	V	
TX_ Fault (Normal)		0		0.8	V	
		Receiver				
Data Output Swing Differential	V _{OUT}	370		2000	mV	1
Rx_LOS Fault	V _{LOS-Fault}	2.0		Vcc+0.3	V	
Rx_LOS Normal	V _{LOS-Normal}	GND		GND+0.8	V	

Notes:

1. Internally AC coupled

Recommended Host Board Power Supply Circuit

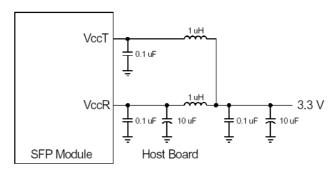


Figure 1, Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

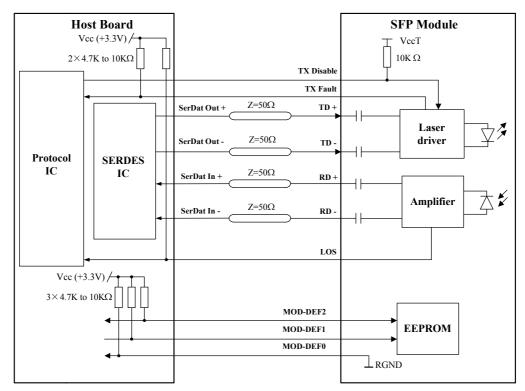


Figure 2, Recommended Interface Circuit

Pin Definitions

Figure 3 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table 6 with some accompanying notes.

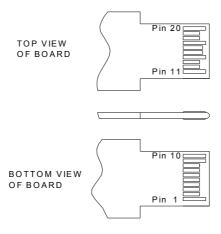


Figure 3, Pin View

Table 6 - Pin Function Definitions

Pin No.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2

	MOD DEED	Maralada Daffadifara O	_	Nata 0
4	MOD-DEF2	Module Definition 2	3	Note 3
5	MOD-DEF1	Module Definition 1	3	Note 3
6	MOD-DEF0	Module Definition 0	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power	2	
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	
	·			

Notes:

- 1. TX Fault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0~0.8V): Transmitter on

(>0.8V, <2.0V): Undefined

High (2.0~3.465V): Transmitter Disabled Open: Transmitter Disabled

3. MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

MOD-DEF 0 is grounded by the module to indicate that the module is present

MOD-DEF 1 is the clock line of two wires serial interface for serial ID

MOD-DEF 2 is the data line of two wires serial interface for serial ID

- 4. LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
- 5. These are the differential receiver output. They are internally AC-coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module.

EEPROM Information

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 7.

Table 7 - EEPROM Serial ID Memory Contents (A0h)

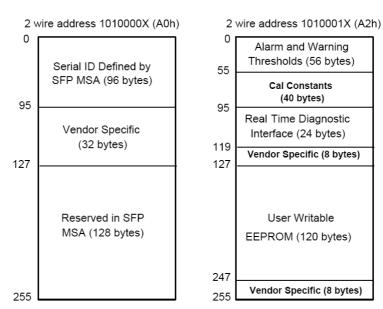
Addr.	Field Size	Name of Field	Hex	Description
	(Bytes)			
0	1	Identifier	03	SFP
1	1	Ext. Identifier	04	MOD4
2	1	Connector	07	LC
				1000BASE-LX,long distance (L); Longwave
3—10	8	Transceiver	00 00 00 02 12 00 01 01	laser (LC)
11	1	Encoding	01	8B10B
12	1	BR, nominal	0D	1.25Gbps
13	1	Reserved	00	
		Length	28	
14	1	(9um)-km	20	40km
15	1	Length (9um)	FF	40km
16	1	Length (50um)	00	
17	1	Length (62.5um)	00	
18	1	Length (copper)	00	
19	1	Reserved	00	
20—35	16	\/andar nama	53 4F 55 52 43 45 50 48	"COURCERHOTONICS"(ACCII)
20—35	16	Vendor name	4F 54 4F 4E 49 43 53 20	"SOURCEPHOTONICS"(ASC II)
36	1	Reserved	00	
37—39	3	Vendor OUI	00 1F 22	
40—55	16	Vendor PN	53 50 47 42 45 58 xx 44	"CDCDEVyDED" (ACCII)
40—55	10	Vendor Pin	46 42 20 20 20 20 20 20	"SPGBEXxDFB" (ASC II)
56—59	4	Vendor rev	31 30 20 20	ASC II ("31 30 20 20" means 1.0 revision)
60-61	2	Wavelength	05 1E	1310nm
62	1	Reserved	00	
63	1	CC BASE	xx	Check sum of bytes 0 - 62
64—65	2	Options	00 1A	LOS, TX_FAULT and TX_DISABLE
66	1	BR, max	00	
67	1	BR, min	00	
60 00	40	\/amdax CNI	xx xx xx xx xx xx xx xx	ACC II
68—83	16	Vendor SN	xx xx xx xx xx xx xx xx	ASC II
		Vendor date		Year (2 bytes), Month (2 bytes), Day (2
84—91	8	code	xx xx xx xx xx xx 20 20	bytes)
92	1	Diagnostic type	58	Diagnostics (External. Cal)
93	1	Enhanced	B0	Diagnostics(Optional Alarm/warning flags,

		option		Soft TX_FAULT and Soft TX_LOS
				monitoring)
94	1	SFF-8472	02	Diagnostics(SFF-8472 Rev 9.4)
95	1	CC_EXT	xx	Check sum of bytes 64 - 94
96—255	160	Vendor specific		

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFF-8472 Rev 9.5.

Monitoring Specification

The digital diagnostic monitoring interface also defines another 256-byte memory map in EEPROM, which makes use of the 8 bit address 1010001X (A2h). Please see Figure 4. For detail EEPROM information, please refer to the related document of SFF-8472 Rev 9.5. The monitoring specification of this product is described in Table 8.



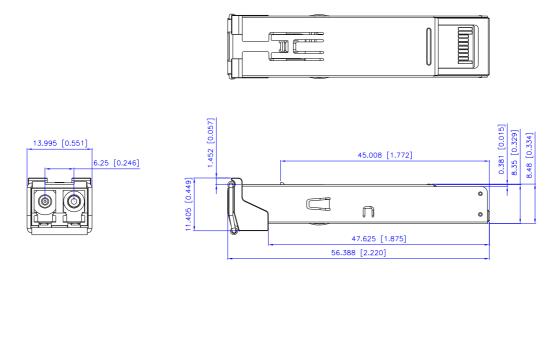

Figure 4, EEPROM Memory Map Specific Data Field Descriptions

Table 8 - Monitoring Specification

Parameter		Range	Accuracy	Calibration
	SP-GB-EX-CDFB	-10 to +80°C	±3°C	External
Temperature	SP-GB-EX-RDFB	-20 to +95°C	±3°C	External
	SP-GB-EX-IDFB	-40 to +95°C	±3°C	External
Voltage		2.97 to 3.63V	±3%	External
Bias Current		3 to 60mA	±10%	External
TX Power		-6 to +1dBm	±3dB	External
RX Power		-23 to -2dBm	±3dB	External

Mechanical Diagram

Units in mm(inch)

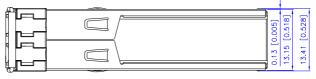


Figure 5, Mechanical Design Diagram of the SFP

Order Information

Table 9 - Order Information

Part No.	Application	Data Rate	Laser Source	Fiber Type
SP-GB-EX-CDFB (C-temp)	1000BASE-EX	1.25Gbps	1310nm DFB	SMF
SP-GB-EX-RDFB (R-temp)	1000BASE-EX	1.25Gbps	1310nm DFB	SMF
SP-GB-EX-IDFB (I-temp)	1000BASE-EX	1.25Gbps	1310nm DFB	SMF

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures. **Laser Safety:** Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Legal Notice

IMPORTANT NOTICE!

All information contained in this document is subject to change without notice, at Source Photonics's sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fi tness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. Customer agrees that Source Photonics is not liable for any actual, consequential, exemplary, or other damages arising directly or indirectly from any use of the information contained in this document. Customer must contact Source Photonics to obtain the latest version of this publication to verify, before placing any order, that the information contained herein is current.

Contact

U.S.A. Headquarters	China	Taiwan
20550 Nordhoff Street	Building #2&5, West Export	9F, No 81, Shui Lee Rd.
Chatsworth, CA 91311	Processing Zone	Hsinchu, Taiwan, R.O.C.
USA	No. 8 Kexin Road, Hi-Tech Zone	Tel: +886-3-5169222
Tel: +1-818-773-9044	Chengdu, 611731, China	Fax: +886-3-5169213
Fax: +1-818-773-0261	Tel: +86-28-8795-8788	
	Fax: +86-28-8795-8789	

© Copyright Source Photonics, Inc. 2007~2008 All rights reserved