

MTRS-3E11A

25G SFP+ Transceiver 300m -40°C~+85°C

Features

- Up to 300M transmission distance over SMF
- Support Multi Rate 9.8304~25.78125Gbps
- 1310nm DFB and PIN receiver
- 25GAUI C2M electrical interface
- 2-wire interface for integrated Digital Diagnostic monitoring
- SFP+ MSA package with duplex LC connectors
- Hot pluggable
- Very low EMI and excellent ESD protection
- +3.3V power supply
- Power consumption less than 1.0 W
- Operating case temperature: -40~85°C

Applications

- 25Gbps Ethernet
- CPRI/eCPRI

Compliance

- Compliant with IEEE 802.3cc
- Compliant with FCC 47 CFR Part 15, Class B
- Compliant with MSA SFF-8472
- Compliant with MSA SFF-8431

Description

Page: 1/15

The HG Genuine MTRA-3E11A is a high performance, cost effective modules, which is supporting Multi Rate 9.83~25.78Gbps, and transmission distance up to 300m on SM fiber. The transceiver consists of two sections: The transmitter section incorporates a 1310nm DFB Laser, a driver and a CDR. The receiver section consists of a PIN photodiode integrated with а trans-impedance preamplifier (TIA), a Limiting Amplifier and CDR. The module is hot pluggable with a 20-pin connector. The high-speed electrical interface is base on low voltage logic, with nominal 100 Ohms differential impedance and AC coupled in the module.

The optical output can be disabled by the LVTTL logic high-level input on TX_DIS pin. Transmit Fault (Tx_Fault) is provided to indicate that the module transmitter has detected a fault condition related to laser operation or safety. Loss of signal (RX_LOS) output is provided to indicate the loss of an input optical signal in receiver.

A serial EEPROM in the transceiver allows the user to access transceiver monitoring and configuration data via the 2-wire SFP Management Interface. Digital diagnostics function are available via a 2-wire serial interface, as specified in SFF-8472.

Absolute Maximum Ratings

Table1-Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	85	°C
Supply Voltage (no damaged)	Vcc3	-0.5	3.63	V
Relative Humidity(non-condensing)	RH		85	%
RX Input OMA Power	X Input OMA Power Pmax		3	dBm

Recommended Operating Conditions

Table2-Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	Tc	-40	25	85	°C
Power Supply Veltage	Vccз	3.135	3.3	3.465	V
Power Supply Voltage	Іссз			300	mA
Maximum sustained peak				330	mA
Current(<500ms)				330	IIIA
Maximum Instantaneous peak				400	mA
current(<50us)				100	1117 (
Power Dissipation	P _D			1	W
Data Rate(NRZ)		9.8304		25.78125	Gbps
Transmission Distance				300	m

Optical, Electrical Characteristic

MTRA-3E11A (1310nm DFB and PIN, 300m)

Tested under recommended operating conditions, unless otherwise noted

Table3-Transmitter Operating Characteristic-Optical, Electrical

Parameter	Symbol	Min.	Typical	Max.	Unit	Note			
Optical Interface Parameters									
Centre Wavelength	λc	1260	1310	1360	nm				
Spectral Width	Pm	-	-	4	nm				
Laser Off Power	Poff			-30	dBm				
Average Optical Power	Pavg	-7		2	dBm				
OMA	Рома	-4		2.2	dBm				
Extinction Ratio	ER	3.5			dB				
Transmitter Dispersion Penalty				2.7	dB				
Relative Intensity Noise	RIN20OMA			-130	dB/Hz				
Optical Return Loss Tolerance		-		20	dB				
Operating Data Rate		9.8304		25.78125	Gbps	Note1			
Optical Eye Mask Margin	>5% No					Note 2			

Page: 2/15

Optical Eye Mask Definition {X1,X2,X3,Y1,Y2,Y3},25GBase_LR {0.35, 0.44, 0.47, 0.35, 0.35, 0.56}						
Lite						
Electrical Interface Parameters						
Tx Input Diff Voltage	VI	180	500	900	mV	
Eye Height @ BER=1e-15	EH15	95			mV	
Eye width @ BER=1e-15	EW15	0.46			UI	
	VOL			0.4	V	At 0.7mA
Tx Fault	VOH	VccT-0.4				Note3

Notes:

[1]Under CDR bypass mode, 9.8304Gbps,10.1376Gbps,10.3125Gbps compatibility

[2]500 consecutive snapshots at typical rate and room temperature, PRBS31 NRZ,

25GBase_LR Lite mask and filter, Hit ratio meet the standard 5E-5 for 24.33024Gbps, 25.78125Gbps

10GBase_LR mask and filter, Hit ratio meet the standard 1E-12 for 9.8304Gbps, 10.1376Gbps, 10.3125Gbps

[3] Measured with a 4.7k Ohm load pulled up to Vcc

Table4-Receiver Operating Characteristic-Optical, Electrical

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note			
Optical Interface Parameters									
Center Wavelength	λr	1260	1310	1360	nm				
Receiver Sensitivity, Average Power				-7.3	dBm	Note 1			
Receiver Sensitivity, OMA				-8.5	dBm	Note 1			
LOS Assert	LosA	-30			dBm				
LOS De-Assert	LosD			-14	dBm				
LOS Hysteresis	LosH	0.5			dB				
Saturation Input Power	Pin	2			dBm				
Receiver Reflectance				-26	dB				
Electrical Interface Parameters									
Operating Data Rate		9.8304		25.78125	Gbps	Note 2			
Rx Output Diff Voltage	Vo	450	600	750	mV	Note 3			
Rx Output Rise and Fall Time	Tr/Tf	9.5			ps	20% to 80%			
Vertical Eye Closure	Vc			5.5	dB	Note 3			
RX LOS enable/disable		Enable Note4				Note4			
LOS Criterion		Average power							

Notes:

- [1] Measured with 25.78125Gb/s,24.33024Gb/s, PRBS-31 NRZ, ER>3.5dB, 1295~1325nm, BER<5E-5 Measured with 9.8304Gb/s,10.1376Gb/s,10.3125Gb/s, PRBS-31 NRZ, ER>3.5dB, 1295~1325nm, BER<1E-12
- [2] Under CDR bypass mode, 9.8304Gb/s, 10.1376Gb/s, 10.3125Gb/s compatibility
- [3] PRBS31 Pattern with Default Emphasis 1dB at 24.33024Gbps and 25.78125Gbps; when data rate turns to 9.8304Gbps, 10.1376Gbps, 10.3125Gbps application, the output emphasis automatically change to 0 dB.

Page: 3/15

[4] Rx Output Squelched on LOS

Table5-Digital Diagnostic Functions

Parameter	Symbol	Min.	Max.	Unit	Note
Temperature monitor absolute error	DMI_Temp	-3	3	$^{\circ}$ C	Over operating temp
Laser power monitor absolute error	DMI_TX	-3	3	dB	
RX power monitor absolute error	DMI_RX	-3	3	dB	
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	
Bias current monitor absolute error	DMI_lbias	-10	10	%	

Table6-Control and Status I/O Timing Characteristics

Parameter	Symbol	Min.	Max.	Unit	Note
TX Disable Assert Time	t_off		100	μs	Note1
TX Disable Negate Time	t_on		2	ms	Note2
Time to initialize including reset of TX_Fault	t_init		300	ms	Note3
TX Fault Assert Time	t_fault		1	ms	Note4
Tx_Fault Reset	t_reset	10		μs	Note5
LOS Assert Time	t_loss_on		100	μs	Note6
LOS Deassert Time	t_loss_off		100	μs	Note7
Rate-Select Change Time	t_ratesel		100	ms	Note8
Rx LOS Assert Delay	t_los_on		100	us	
Rx LOS Negate Delay	t_los_off		100	us	
Time To Clock Re_locked	t_clk_lock		20	ms	

Notes:

- [1] Time from rising edge of TX Disable to when the optical output falls below 10% of nominal
- [2] Time from falling edge of TX Disable to when the modulated optical output rises above 90% of nominal
- [3] From power on or negation of TX Fault using TX Disable
- [4] Time from fault to TX fault on
- [5] Time TX Disable must be held high to reset TX_fault
- [6] Time from LOS state to RX LOS assert
- [7] Time from non-LOS state to RX LOS de-assert.
- [8] Time from rising or falling edge of Rate Select input until receiver bandwidth is in conformance with appropriate specification

Page: 4/15

Table7-IIC 2-wire specification

Parameter	Symbol	Min.	Max.	Unit	Note
Clock frequency	f_scl	0	400	kHz	Note1
Clock pulse width low	t_Low	1.3	-	us	
Clock pulse width high	t_нıсн	0.6	-	us	
START Hold Time	t_hd:sta	0.6	-	us	
START Set-up Time	t_su:sta	0.6	-	μs	
Data In Hold Time	t_hd:dat	0	-	ns	
Data In Set-up Time	t_su:dat	100	-	ns	
Input Rise Time(100KHz) From (VIL,MAX - 0.15) to (VIH,MIN + 0.15)	T_r,100	-	1000	ns	
Input Rise Time(400KHz) From (V _{IL,MAX} - 0.15) to (V _{IH,MIN} + 0.15)	T_r,400	-	300	ns	
Input Fall Time(100KHz) From (V _{IH,MIN} + 0.15) to (V _{IL,MAX} - 0.15)	T_f,100	-	300	ns	
Input Fall Time(400KHz) From (V _{IH,MIN} + 0.15) to (V _{IL,MAX} - 0.15)	T_f,400	-	300	ns	
STOP Set-up Time	t_su:sto	0.6	-	us	
Time bus free before new transmission can start	tbur	20	-	us	
Time to initialize	t_init		300	ms	Note2
Clock stretching	T_clock_hold		500	us	Note3\ Note4
Complete Single or Sequential Write up to 4 Byte	t_wr	-	40	ms	
Complete Sequential Write of 5-8 Byte	t_wr	-	80	ms	
Endurance (Write Cycles)		10k	-	cycle	

Notes:

- [1] SFP28 module clock frequency must satisfied 0~400kHz;
- [2] The time means from power up to module work normally;
- [3] Maximum time module may hold the SCL line low before continuing with a read or write operation;
- [4] If module support clock stretching, should meet the specification; if module don't support clock stretching, don't care.

Page: 5/15

Reliability Test Definitions and Distributions

Table8-Reliability Test Definitions and Distributions

Group	Test	Reference	Condition	SS ^[1]	C ^[2]
Mechanical	Mechanical shock	MIL-STD-883E Method 2002.4	5 times/axis, 6 axes; 500G, 1.0ms	11	0
Integrity	Vibration	MIL-STD-883E Method 2007.3	20G, (20-2,000) Hz, 4 min/cycle, 4 cycles/axial direction, 3 axial direction	11	0
	Accelerated Aging	GR-468-Core 3.3.3.1	85℃(Ambient Temp.) Vcc=3.3V, 2,000hrs required	22	0
	High temperature Storage	GR-468-Core Issue 2, Section 3.3.2.1	85 °C (Ambient Temp.), 2000hrs	11	0
	Low temperature Storage	GR-468-Core Issue 2, Section 3.3.2.1	-40°C (Ambient Temp.), 72 hours	11	0
Endurance	Temperature Cycles	GR-468-Core Issue 2, Section 3.3.2.2 or MIL-STD-883C Method 1010.8	-40°C/85°C, 100 cycles (CO environment), 500 cycles (UNC environment)	11	0
Lindurance	Damp Heat	GR-468-CORE 3.3.2.3	85°C/85%RH,500h	11	0
	Cyclic moisture resistance	MIL-STD-883E Method 1004.7	No preconditioning. Normal operating conditions. Ramp Time below zero to min storage temp should be rapid or with fast ramp time. Minimum of 20 cycles with 10 sub-cycles. Active Components and Modules. 20 cycles, w/ 5 sub-cycles.	11	0
ESD threshold	ESD Immunity	IEC 61000-4-2	In terms of 8kV package contact ESD test and air discharge ESD 15kV test, it is allowed that bit-error occurring during the test, but the bit-error shall be able to recover automatically.	6	0

Page: 6/15

	ESD (HBM model)	GR-468-CORE、 JESD22-A114-B	The modules should meet ESD threshold value requirement which defined in GR-468-CORE, as well as in MSA documents for example, high speed interface, XFP XFI pin, Serdes should meet HBM 500V ESD requirement, the other interface should meet above 2kV HBM ESD level.	6	0
--	-----------------	-------------------------------	---	---	---

Note:

[1] SS: Sample Size;

[2] C: Maximum number of failure allowed in the test.

Pin-out Definitions

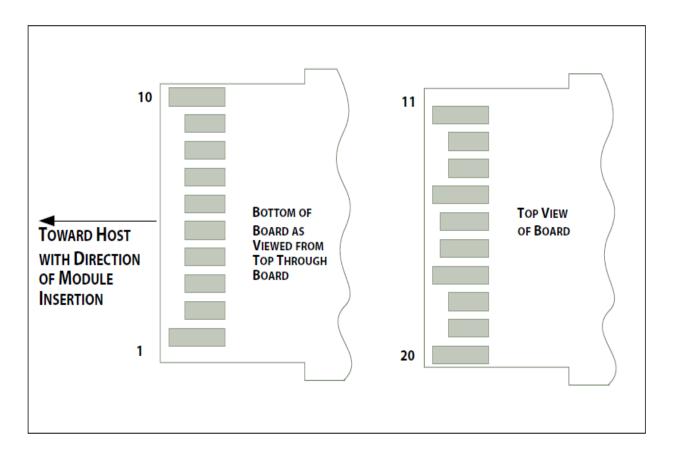


Figure1

Page: 7/15

Table9-Pin Function Definitions

Pin	Logic	Symbol	Name/Description	Note
1		VeeT	Module Transmitter Ground	Note1
2	LVTTL-O	TX_Fault	Module Transmitter Fault	Note2
3	LVTTL-I	TX_Disable	Transmitter Disable; Turns off transmitter laser output	Note3
4	LVTTL-I/O	SDA	2-wire Serial Interface Data Line (Same as MOD-DEF2 as defined in the INF-8074i)	Note4
5	LVTTL-I/O	SCL	2-wire Serial Interface Clock (Same as MOD-DEF1 as defined in the INF-8074i)	Note4
6		MOD_ABS	Module Absent, connected to VeeT or VeeR in the module	Note5
7	LVTTL-I	RS0	Rate Select 0, optionally controls SFP+ module receiver.	Note6
8	LVTTL-O	RX_LOS	Receiver Loss of Signal Indication (In FC designated as RX_LOS, in SONET designated as LOS, and in Ethernet designated at Signal Detect)	Note2
9	LVTTL-I	RS1	Rate Select 1, optionally controls SFP+ module transmitter	Note6
10		VeeR	Module Receiver Ground	Note1
11		VeeR	Module Receiver Ground	Note1
12	CML-O	RD-	Receiver Inverted Data Output	
13	CML-O	RD+	Receiver Non-Inverted Data Output	
14		VeeR	Module Receiver Ground	Note1
15		VccR	Module Receiver 3.3 V Supply	
16		VccT	Module Transmitter 3.3 V Supply	
17		VeeT	Module Transmitter Ground	Note1
18	CML-I	TD+	Transmitter Non-Inverted Data Input	
19	CML-I	TD-	Transmitter Inverted Data Input	
20		VeeT	Module Transmitter Ground	Note1

Notes:

- [1] The module signal ground pins, VeeR and VeeT, shall be isolated from the module case.
- [2] This pin is an open collector/drain output pin and shall be pulled up with 4.7k-10kohms to Host_Vcc on the host board. Pull ups can be connected to multiple power supplies, however the host board design shall ensure that no module pin has voltage exceeding module VccT/R + 0.5 V.

Page: 8/15

- [3] This pin is an open collector/drain input pin and shall be pulled up with 4.7k-10kohms to VccT in the module.
- [4] See SFF-8431 4.2 2-wire Electrical Specifications .
- [5] This pin shall be pulled up with 4.7k-10kohms to Host_Vcc on the host board.
- [6] RS0 and RS1 are module inputs and are pulled low to VeeT with 30 k Ω resistors in the module.

Block Diagram of Transceiver

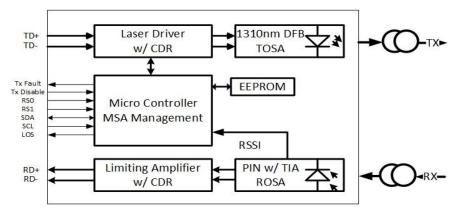


Figure2

<Transmitter Section>:

The transmitter converts 25.78Gbit/s serial CML electrical data into serial optical data compliant with the 25G Ethernet. An open collector compatible Transmit Disable (Tx_Dis) is provided. A logic "1," or no connection on this pin will disable the laser from transmitting. A logic "0" on this pin provides normal operation. The transmitter has an internal automatic power control loop (APC) to ensure constant optical power output across supply voltage and temperature variations. An open collector compatible Transmit Fault (Tx_Fault) is provided. TX_Fault is a module output contact that when high, indicates that the module transmitter has detected a fault condition related to laser operation or safety. The TX_Fault output contact is an open drain/collector and shall be pulled up to the Vcc_Host in the host with a resistor in the range 4.7-10 kΩ. TX Disable is a module input contact. When TX Disable is asserted high or left open, the SFP+ module transmitter output shall be turned off. This contact shall be pulled up to VccT with a 4.7 k Ω to 10 k Ω resistor. Per the requirements of performance, internal clock and data recovery circuits (CDR) are present on electrical input of this transceiver module.

<Receiver Section>:

The receiver converts 25.78Gbit/s serial optical data into serial CML electrical data. An open collector compatible Loss of Signal is provided. Rx_LOS when high indicates an optical signal level below that specified in the relevant standard. The Rx_LOS contact is an open drain/collector output and shall be pulled up to Vcc_Host in the host with a resistor in the range 4.7-10 k Ω , or with an active termination. The Rx_LOS signal is intended as a preliminary indication to the system in which the SFP+ is installed that the received signal strength is below the specified range. Such an indication typically points to non-installed cables, broken cables, or a disabled, failing or a powered off transmitter at the far end of the cable. Per the requirements of performance, internal clock and data recovery circuits (CDR) are present on electrical output of this transceiver module.

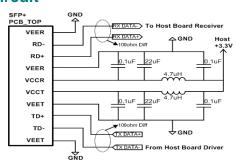
<TX Equalization Control>:

Tx input equalization control can be accessed through 2-wire serial interface at byte address 114(A2h). Tx input equalization control for 25GE is located at the upper 4 bits of byte 114 (A2h).

<RX Emphasis Control>:

Rx output emphasis control can be accessed through 2-wire serial interface at byte address 115(A2h). Rx output emphasis control for 25GE is located at the upper 4 bits of byte 115 (A2h).

Page: 9/15


<Rate Selection>:

The Data Rate or Retimer/CDR status cloud be configured by physical Interface RS0, RS1 pin or the mapping register (110,118 byte bit3 (A2h)) through 2-wire communication interface. Configuration and Rate performance could reference the table10 as below.

Table10-Rate selection

Logic OR of RS0 pin and RS0 bit	Logic OR of RS1 pin and RS1 bit	Receiver retimer/CDR	Transmitter retimer/CDR	Rate
Low/0	Low/0	CDR Bypass	CDR Bypass	Tx and Rx: 9.8304Gbps, 10.1376Gbps or 10.3125Gbps
Low/0	High/1	CDR Bypass	CDR Lock at High Data Rate	Tx: 24.33024Gbps or 25.78125Gbps. Module auto detect data rate and CDR lock accordingly. Rx: 9.8304Gbps, 10.1376Gbps or 10.3125Gbps
High/1	Low/0	CDR Lock at High Data Rate	CDR Bypass	Tx: 9.8304Gbps, 10.1376Gbps or 10.3125Gbps Rx: 24.33024Gbps or 25.78125Gbps. Module auto detect data rate and CDR lock accordingly.
High/1	High/1	CDR Lock at High Data Rate	CDR Lock at High Data Rate	Defaults Tx and Rx: 24.33024Gbps or 25.78125Gbps. Module auto detect data rate and CDR lock accordingly.

Recommended Interface Circuit

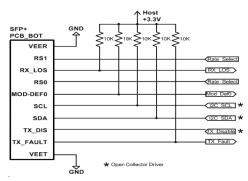
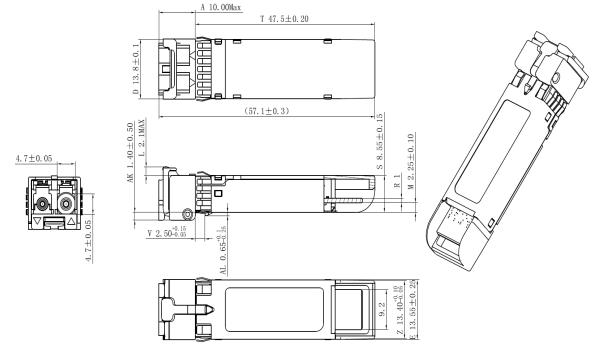
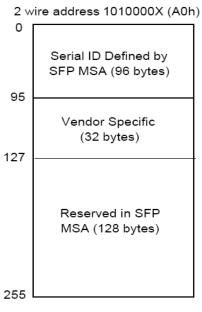


Figure3


Page: 10/15

Dimensions


Unit:mm

Unmarked tolerance: ± 0.1

Figure4

Digital Diagnostic Memory Map

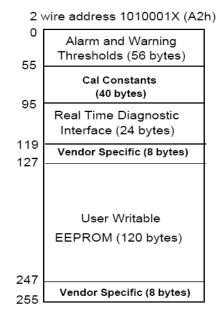


Figure5

Page: 11/15

EEPROM Information

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 11.

Table11-EEPROM Serial ID Memory Contents (A0h)

	Field Size	al ID Memory Contents (
Addr.	(Bytes)	Name of Field	Hex	Description			
0	1	Identifier	03	SFP			
				SFP function is defined by serial ID			
1	1	Ext. Identifier	04	only			
2	1	Connector	Connector 07 LC				
3-10	8	Transceiver	00 00 00 00 00 00 00 00				
11	1	Encoding	03	NRZ			
12	1	BR, Nominal	FF	255*100MBd			
13	1	Rate Identifier	0D	Unspecified			
14	1	Length (9um) km	00	Transceiver transmit distance			
15	1	Length (9um) 100m	03	Transceiver transmit distance,3*100m			
16	1	Length (50um)10m	00	Transceiver transmit distance			
17	1	Length (62.5um) 10m	00	Transceiver transmit distance			
18	1	Length (Copper)	00	Not compliant			
19	1	Length (50um OM3)	00	Not compliant			
20-35	16	Vendor name	48 47 20 47 45 4E 55 49 4E 45 20 20 20 20 20 20	"HG GENUINE" Vendor Name(ASCII			
36	1	Reserved	00	Unspecified			
37-39	3	Vendor OUI	DA 28 EC				
40-55	16	Vendor PN	4D 54 52 41 2D 33 45 31 31 41 20 20 20 20 20 20	"MTRA-3E11A"Part No.(ASCII)			
56-59	4	Vendor rev	31 2E 30 20	"1.0" (ASCII)			
60-61	2	Wavelength	05 1E	Transceiver wavelength			
62	1	Reserved	00				
63	1	CC_BASE	96	Check code for Base ID Fields			
				a conventional uncooled laser			
				Power Level 1			
	2	Options		a conventional limiting output			
64-65				the transceiver has an internal retimer			
			08 3A	or CDR			
				TX_DISABLE			
				TX_FAULT			
				Rx_LOS			
				RATE_SELECT			
66	1	BR,MAX	67	103%, 25.75Gbps			

Page: 12/15

67	1	BR,MIN	00				
68-83	16	Vendor SN	SN(Variable)	Serial Number of transceiver(ASCII)			
84-91	8	Date code	DC(Variable)	Manufactory Date Code.			
92	1	Diagnostic Monitoring Type	68	Digital diagnostic monitoring implemented, "internally calibrated" is implemented			
93	1	Enhanced Options	F8	Alarm/warning flags soft TX_DISABLE soft TX_FAULT soft RX_LOS soft RATE_SELECT			
94	1	SFF_8472 Compliance	08	Includes functionality described in Rev12.0 SFF-8472			
95	1	CC_EXT	11(Variable)	Check sum for Extended ID Field.			
96-127	32	Vendor Specific	Read only	Depends on customer information Filled by zero			
128-255	128	Reserved	Read only	Filled by zero			

Table12-DDM Alarm & warning threshold(A2h)

Addr.	Field Size (Bytes)	Name of Field	Description		
00-01	2	Temperature High Alarm	95℃		
02-03	2	Temperature Low Alarm	-50℃		
04-05	2	Temperature High Warning	85℃		
06-07	2	Temperature Low Warning	-40℃		
08-09	2	Vcc High Alarm	3.63V		
10-11	2	Vcc Low Alarm	2.97V		
12-13	2	Vcc High Warning	3.465V		
14-15	2	Vcc Low Warning	3.135V		
16-17	2	Bias High Alarm	90mA		
18-19	2	Bias Low Alarm	5mA		
20-21	2	Bias High Warning	80mA		
22-23	2	Bias Low Warning	10mA		
24-25	2	TX Power High Alarm	5dBm		
26-27	2	TX Power Low Alarm	-10dBm		
28-29	2	TX Power High Warning	2dBm		
30-31	2	TX Power Low Warning	-7dBm		
32-33	2	RX Power High Alarm	5dBm		
34-35	2	RX Power Low Alarm	-13.5dBm		
36-37	2	RX Power High Warning	2dBm		

Page: 13/15

Regulatory Compliance

Table13-Regulatory Compliance

Feature		Reference	Performance		
Electrostatic dis	charge (ESD)	IEC/EN 61000-4-2	Compatible with standards		
	ic Interference	FCC Part 15 Class B EN 55022 Class B (CISPR 22A)	Compatible with standards		
Laser Ey	ve Safety	FDA 21CFR 1040.10, 1040.11 IEC/EN 60825-1, 2	Class 1 laser product		
Component	Recognition	IEC/EN 60950 , UL	Compatible with standards		
RC	OHS	Directive 2011/65/EU & Directive (EU) 2015/863	Compatible with standards		
EN	ИC	EN61000-4-3	Compatible with standards		
	UL	UL60950-1	Compatible with standards		
Safety regulation requirement	TUV	IEC/EN60950-1, IEC/EN60825-1, IEC/EN60825-2;	Compatible with standards		
	FDA	21 CFR 1040.10 & 1040.11	Compatible with standards		

Ordering Information

Table14- Ordering Information

Part No.	Specification								
	Pack	Rate	Tx	Pout	Rx	Sens_ OMA	Тор	Reach	Others
MTRA-3E11A	SFP28	25.78Gbps	1310nm DFB	-7~2 dBm	PIN	<-8.5dBm	-40∼85℃	300m	DDM/RoHS

Page: 14/15

Contact Information:

Company HQ: WuhanHuagong Genuine Optics Technology Co., Ltd

Address: Science & Technology Region of HUST, Donghu High-Tech Zone

Wuhan, Hubei Province, 430223, China

Tel: +86-27-87180102Fax: +86-27-87180220

Email: market@genuine-opto.com Website: http://www.genuine-opto.com

USA Office:

HG Genuine USA Co., Ltd

Address: 2-25 Gateway Place, Suite 128

San Jose, CA 95110

Email: infous@genuine-opto.com Website: https://en.genuine-opto.com

Statement

Important Notice - All information contained in this document is subject to change without notice, at HG Genuine Optics Co.'s sole and absolute discretion. All the information was obtained in specific environments; and HG Genuine Optics Co. will not be responsible for verifying the products performance in customers' operating environments, or liable for the performance of users' products. All information contained in this document is only for the users' reference and shall not be considered as warranted characteristics. HG Genuine Optics Co. will not be liable for damages arising directly or indirectly from any use of the information contained in this document.

Caution

All adjustments have been done at the factory before the shipment of the devices. No user serviceable parts inside or maintenance required. Tampering with and modifying the performance of the device will result in voided product warranty.

Handling precautions: Please follow guidelines according to proper ESD handling procedures as this device is susceptible to damage as a result of electrostatic discharge (ESD).

Laser Safety: Avoid direct or indirect eye exposure as radiation emitted by laser devices can be dangerous to human eyes.

Copyright © HG Genuine. All Right Reserved

Page: 15/15

www.sfp.by